百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

万字详解:腾讯如何自研大规模知识图谱 Topbase

qihemm 2025-05-15 21:42 9 浏览 0 评论

作者:郑孙聪,腾讯 TEG 应用研究员

Topbase 是由 TEG-AI 平台部构建并维护的一个专注于通用领域知识图谱,其涉及 226 种概念类型,共计 1 亿多实体,三元组数量达 22 亿。在技术上,Topbase 支持图谱的自动构建和数据的及时更新入库。此外,Topbase 还连续两次获得过知识图谱领域顶级赛事 KBP 的大奖。目前,Topbase 主要应用在微信搜一搜,信息流推荐以及智能问答产品。本文主要梳理 Topbase 构建过程中的技术经验,从 0 到 1 的介绍了构建过程中的重难点问题以及相应的解决方案,希望对图谱建设者有一定的借鉴意义。

一、简介

知识图谱( Knowledge Graph)以结构化的形式描述客观世界中概念、实体及其关系,便于计算机更好的管理、计算和理解互联网海量信息。通常结构化的知识是以图形式进行表示,图的节点表示语义符号(实体,概念),图的边表示符号之间的语义关系(如图 1 所示),此外每个实体还有一些非实体级别的边(通常称之为属性),如:人物的出生日期,主要成就等。

TEG-AI 平台部的 Topbase 是专注于通用领域知识。数据层面,TopBase 覆盖 51 个领域的知识,涉及 226 种概念类型,共计 1 亿多个实体,三元组数量达 22 亿多。技术层面,Topbase 已完成图谱自动构建和更新的整套流程,支持重点网站的监控,数据的及时更新入库,同时具备非结构化数据的抽取能力。此外,Topbase 还连续两次获得过知识图谱领域顶级赛事 KBP 的大奖,分别是 2017 年 KBP 实体链接的双项冠军,以及 2019 年 KBP 大赛第二名。在应用层面,Topbase 主要服务于微信搜一搜,信息流推荐以及智能问答产品。本文主要梳理 Topbase 构建过程中的重要技术点,介绍如何从 0 到 1 构建一个知识图谱,内容较长,建议先收藏。

二、知识图谱技术架构

TopBase 的技术框架如图 2 所示,主要包括知识图谱体系构建,数据生产流程,运维监控系统以及存储查询系统。其中知识图谱体系是知识图谱的骨架,决定了我们采用什么样的方式来组织和表达知识,数据生产流程是知识图谱构建的核心内容,主要包括下载平台,抽取平台,知识规整模块,知识融合模块,知识推理模块,实体重要度计算模块等。Topbase 应用层涉及知识问答(基于 topbase 的 KB-QA 准确率超 90%),实体链接(2017 图谱顶级赛事 KBP 双料冠军),相关实体推荐等。

  1. 下载平台-知识更新:下载平台是知识图谱获取源数据平台,其主要任务包括新实体的发现和新实体信息的下载。
  2. 抽取平台-知识抽取:下载平台只负责爬取到网页的源代码内容,抽取平台需要从这些源码内容中生成结构化的知识,供后续流程进一步处理。
  3. 知识规整:通过抽取平台以及合作伙伴提供的数据我们可以得到大量的多源异构数据。为了方便对多源数据进行融合,知识规整环节需要对数据进行规整处理,将各路数据映射到我们的知识体系中。
  4. 知识融合:知识融合是对不同来源,不同结构的数据进行融合,其主要包括实体对齐和属性融合。
  5. 知识推理:由于处理数据的不完备性,上述流程构建的知识图谱会存在知识缺失现象(实体缺失,属性缺失)。知识推理目的是利用已有的知识图谱数据去推理缺失的知识,从而将这些知识补全。此外,由于已获取的数据中可能存在噪声,所以知识推理还可以用于已有知识的噪声检测,净化图谱数据。
  6. 实体知名度计算:最后,我们需要对每一个实体计算一个重要性分数,这样有助于更好的使用图谱数据。比如:名字叫李娜的人物有网球运动员,歌手,作家等,如果用户想通过图谱查询“李娜是谁”那么图谱应该返回最知名的李娜(网球运动员)。

三、知识体系构建

知识体系的构建是指采用什么样的方式来组织和表达知识,核心是构建一个本体(或 schema)对目标知识进行描述。在这个本体中需要定义:1)知识的类别体系(如:图 1 中的人物类,娱乐人物,歌手等);2)各类别体系下实体间所具有的关系和实体自身所具有的属性;3)不同关系或者属性的定义域,值域等约束信息(如:出生日期的属性值是 Date 类型,身高属性值应该是 Float 类型,简介应该是 String 类型等)。我们构建 Topbase 知识体系主要是以人工构建和自动挖掘的方式相结合,同时我们还大量借鉴现有的第三方知识体系或与之相关的资源,如:Schema.org、Dbpedia、大词林、百科(搜狗)等。知识体系构建的具体做法:

  1. 首先是定义概念类别体系:概念类别体系如图 1 的概念层所示,我们将知识图谱要表达的知识按照层级结构的概念进行组织。在构建概念类别体系时,必须保证上层类别所表示的概念完全包含下层类别表示的概念,如娱乐人物是人物类的下层类别,那么所有的娱乐人物都是人物。在设计概念类别体系时,我们主要是参考 schema.org、DBpedia 等已有知识资源人工确定顶层的概念体系。同时,我们要保证概念类别体系的鲁棒性,便于维护和扩展,适应新的需求。除了人工精心维护设计的顶层概念类别体系,我们还设计了一套上下位关系挖掘系统,用于自动化构建大量的细粒度概念(或称之为上位词),如:《不能说的秘密》还具有细粒度的概念:“青春校园爱情电影”,“穿越电影”。
  2. 其次是定义关系和属性:定义了概念类别体系之后我们还需要为每一个类别定义关系和属性。关系用于描述不同实体间的联系,如:夫妻关系(连接两个人物实体),作品关系(连接人物和作品实体)等;属性用于描述实体的内在特征,如人物类实体的出生日期,职业等。关系和属性的定义需要受概念类别体系的约束,下层需要继承上层的关系属性,例如所有歌手类实体应该都具有人物类的关系和属性。我们采用半自动的方式生成每个概念类别体系下的关系属性。我们通过获取百科 Infobox 信息,然后将实体分类到概念类别体系下,再针对各类别下的实体关系属性进行统计分析并人工审核之后确定该概念类别的关系属性。关系属性的定义也是一个不断完善积累的过程。
  3. 定义约束:定义关系属性的约束信息可以保证数据的一致性,避免出现异常值,比如:年龄必须是 Int 类型且唯一(单值),演员作品的值是 String 类型且是多值。

四、下载平台-知识更新

知识更新主要包括两方面内容,一个是新出现的热门实体,需要被及时发现和下载其信息,另一个是关系属性变化的情况需要对其值进行替换或者补充,如明星的婚姻恋爱关系等。知识更新的具体流程如下图所示:


  1. 针对热门实体信息的更新策略主要有:



2.针对其他关系属性易变的情况,我们针对某些重要关系属性进行专项更新。如明星等知名人物的婚姻感情关系我们主要通过事件挖掘的方式及时更新,如:离婚事件会触发已有关系“妻子”“丈夫”变化为“前妻”“前夫”,恋爱事件会触发“男友”“女友”关系等。此外,基于非结构化抽取平台获得的三元组信息也有助于更新实体的关系属性。

五、抽取平台 - 知识抽取

Topbase 的抽取平台主要包括结构化抽取,非结构化抽取和专项抽取。其中结构化抽取主要负责抽取网页编辑者整理好的规则化知识,其准确率高,可以直接入库。由于结构化知识的局限性,大量的知识信息蕴含在纯文本内容中,因此非结构化抽取主要是从纯文本数据中挖掘知识弥补结构化抽取信息的不足。此外,某些重要的知识信息需要额外的设计专项策略进行抽取,比如:事件信息,上位词信息(概念),描述信息,别名信息等。这些重要的知识抽取我们统称专项抽取,针对不同专项的特点设计不同的抽取模块。

1. 结构化抽取平台

许多网站提供了大量的结构化数据,如(图 4 左)所示的百科 Infobox 信息。这种结构化知识很容易转化为三元组,如:“<姚明,妻子,叶莉>”。针对结构化数据的抽取,我们设计了基于 Xpath 解析的抽取平台,如(图 4 右)所示,我们只需要定义好抽取网页的种子页面如:baike.com,然后从网页源码中拷贝 Infobox 中属性的 xpath 路径即可实现结构化知识的自动抽取,入库。通过结构化抽取平台生成的数据准确率高,因此无需人工参与审核即可直接入库,它是知识图谱的重要数据来源。


  1. 非结构化抽取平台

由于大量的知识是蕴含在纯文本中,为了弥补结构化抽取信息的不足,我们设计了非结构化抽取平台。非结构化抽取流程如图 5 所示:


首先我们获取知识图谱中重要度高的实体名构建 Tri 树,然后回标新闻数据和百科正文数据,并将包含实体的句子作为候选抽取语料(新闻和百科数据需要区别对待,新闻数据往往包含最及时和最丰富的三元组信息,百科数据质量高,包含准确的知识,且百科摘要或正文描述相对简单,抽取结果的准确率高)。

然后,我们利用 Topbase 的实体链接服务,将匹配上的实体链接到知识库的已有实体中,避免了后期的数据融合。比如:实体“李娜”匹配到一句话是“歌手李娜最终归一了佛门”,那么这句话中的李娜会对应到知识库中的歌手李娜,而不是网球李娜,从这句话中抽取的结果只会影响歌手李娜的。实体链接之后,我们将候选语料送入我们的抽取服务,得到实体的三元组信息。

最后,三元组结果会和知识库中已有的三元组数据进行匹配并给每一个抽取得到的三元组结果进行置信度打分,如果知识库已经存在该三元组信息则过滤,如果知识库中三元组和抽取得到的三元组发生冲突则进入众包标注平台,如果三元组是新增的知识则根据他们的分值决定是否可以直接入库或者送入标注平台。此外,标注平台的结果数据会加入到抽取服务中 Fine-tune 模型,不断提升抽取模型的能力。

上述流程中的核心是抽取服务模块,它是非结构化抽取策略的集合。抽取服务构建流程如图 6 所示,其主要包括离线模型构建部分以及在线服务部分。离线模型构建的重点主要在于如何利用远监督的方式构建抽取模型的训练数据以及训练抽取模型。在线流程重点是如何针对输入的文本进行预处理,走不同的抽取策略,以及抽取结果的后处理。针对不同属性信息的特点,抽取策略主要可以简单归纳为三大类方法:



3. 专项抽取

专项抽取模块主要是针对一些重要知识的抽取。目前知识图谱设计的专项抽取内容主要有:上位词抽取(概念),实体描述抽取,事件抽取,别名抽取等。

1 ) 上位词抽取: 上位词可以理解为实体细粒度的概念,有助于更好的理解实体含义。图 7 是构建上位词图谱的一个简要流程图,其中主要从三路数据源中抽取上位词数据,主要包括:知识图谱的属性数据,百科人工标注 Tag,纯文本语料。由于抽取得到的上位词表述多样性问题,所以需要在抽取后进行同义上位词合并。此外,抽取生成的上位词图谱也会存在着知识补全的问题,所以需要进一步的进行图谱的连接预测,进行上位词图谱的补全。


2) 实体描述 tag 抽取: 实体描述 tag 是指能够描述实体某个标签的短句,图 7 是从新闻文本数据中挖掘到的实体“李子柒”的部分描述 tag。描述 tag 目前主要用于相关实体推荐理由生成,以及搜索场景中实体信息展示。描述 tag 抽取的核心模块以 QA-bert 为主的序列标注模型,query 是给定的实体信息,答案是句子中的描述片段。此外,还包括一系列的预处理过滤模块和后处理规整过滤模块。


3)事件抽取: 事件抽取的目的是合并同一事件的新闻数据并从中识别出事件的关键信息生成事件的描述。事件抽取的基本流程如图 8 所示。


六、知识规整 - 实体分类

知识规整目的是将实体数据映射到知识体系,并对其关系属性等信息进行去噪,归一化等预处理。如图 9 所示,左侧是从百科页面获取的武则天人物信息,右侧是从电影相关网站中获得的武则天信息,那么左侧的“武则天”应该被视为“人物类--历史人物--帝王”,右侧“武则天”应该被视为“作品--影视作品--电影”。左侧人物的“民族”属性的原始名称为“民族族群”,所以需要将其规整为 schema 定义的“民族”,这称之为属性归一。此外,由于不同来源的数据对实体名称会有不同的注释,如豆瓣的“武则天”这部电影后面加了一个年份备注,所以我们还需要对实体名进行还原处理等各种清洗处理。知识规整的核心模块是如何将实体映射到知识体系,即实体分类。


1. 实体分类的挑战





2.实体分类方法:实体分类本质是一个多分类问题。针对知识库的特点以及上述挑战,我们分别从训练样本构建,特征选择以及模型设计三方面实现实体分类模块。

1 )实体分类的训练样本构建






2) 实体分类的特征选择

3) 实体分类模型



七、知识融合 - 实体对齐

知识融合的目的是将不同来源的数据进行合并处理。如从搜狗百科,体育页面以及 QQ 音乐都获取到了"姚明"信息,首先需要判断这些来源的"姚明"是否指同一实体,如果是同一个实体(图 18 中的搜狗和虎扑的姚明页面)则可以将他们的信息进行融合,如果不是(QQ 音乐的姚明页面)则不应该将其融合。知识融合的核心是实体对齐,即如何将不同来源的同一个实体进行合并。



1. 实体对齐挑战







2. 实体对齐的解决思路

实体对齐的整体流程如图所示,其主要环节包括数据分桶,桶内实体相似度计算,桶内实体的聚类融合。


1)数据分桶:数据分桶的目的是对所有的多源实体数据进行一个粗聚类,粗聚类的方法基于简单的规则对数据进行分桶,具体规则主要是同名(原名或者别名相同)实体分在一个桶内,除了基于名称匹配,我们还采用一些专有的属性值进行分桶,如出生年月和出生地一致的人物分在一个桶。

2)实体相似度计算:实体相似度直接决定了两个实体是否可以合并,它是实体对齐任务中的核心。为了解决相似属性稀疏导致的欠融合问题,我们引入异构网络向量化表示的特征,为了解决同系列作品极其相似的过融合问题,我们引入了互斥特征。





3) 相似实体的聚类合并:

八、知识关联和推理

知识关联(链接预测)是将实体的属性值链接到知识库的实体中,构建一条关系边,如图 24 所示“三国演义”的作者属性值是“罗贯中”字符串,知识关联需要将该属性值链接到知识库中的实体“罗贯中”,这样实体“三国演义”和“罗贯中”之间存在一条“作者”的关系边。


Topbase 的知识关联方案分为基于超链接的关联和基于 embedding 的文本关联两种方式。超链接关联是 Topbase 进行关联和推理的第一步,它是利用网页中存在的超链接对知识图谱中的实体进行关联,如百科“三国演义”页面中,其“作者”属性链接到“罗贯中”的百科页面(如图 24 所示),基于这种超链接的跳转关系,可以在 Topbase 的实体之间建立起一条边关系,如该示列会在实体“三国演义”与“罗贯中”之间生成一条“作者”关系,而“曹操”并没有该超链接,所以三国演义的主要人物属性中的字符串“曹操”不会关联到具体的实体页面中。在进行超链接关联之前,Topbase 中的实体是一个个孤立的个体,超链接关联为知识图谱补充了第一批边关系,但是超链接关联无法保证链接的覆盖率。

基于此,Topbase 提出基于 embedding 的文本关联。基于 embedding 的文本关联是在已知头实体、关系的基础上,在候选集中对尾实体进行筛选,尾实体的候选集是通过别名匹配召回。如上述百科示列中的“主要人物”属性,我们利用其属性值字符串”曹操“去 Topbase 库里匹配,召回所有和”曹操”同名称的实体作为建立链接关系的候选。然后利用知识库 embedding 的方法从候选实体中选择最相似的实体作为他的链接实体。基于文本名称的匹配召回候选可以大大提高知识库 embeding 方法的链接预测效果。基于 embedding 的链接关系预测是通过模型将实体和关系的属性信息、结构信息嵌入到一个低维向量中去,利用低维向量去对缺失的尾实体进行预测。

当前采用的嵌入模型是 TextEnhanced+TransE,模型结构如图 25 所示。TransE 是将实体与关系映射到同一向量空间下,它是依据已有的边关系结构对实体之间的边关系进行预测,对孤立实体或链接边较少的实体预测效果较差。为了引入文本信息,解决模型对孤立实体预测的难题,模型使用 TextEnhanced 对文本信息进行嵌入。TextEnhanced 通过 NN 模型对文本信息嵌入后,利用 Attention 机制将文本信息嵌入到 Trans 系列的实体向量中,进而对尾实体进行预测。


由于知识关联是在已知属性值的前提下,通过名称匹配的方式得到关联实体的候选集,所以知识关联无法补充缺失属性值的链接关系。如上图中“三国演义”的信息中并没有“关羽”,知识推理目的是希望能够挖掘“三国演义”和“关羽”的潜在关系。为了保证图谱数据的准确率,Topbase 的知识推理主要以规则推理为主,具体的规则方法可以归纳为以下几类:










九、实体知名度计算

实体的知名度(Popularity)指标可以用于量化不同实体的重要性程度,方便我们更好的使用图谱数据。Topbase 知识库的 popularity 计算以基于实体链接关系的 pagerank 算法为核心,以对新热实体的 popularity 调整为辅,并配以直接的人工干预来快速解决 badcase。具体地,首先抽取实体页面之间的超链接关系,以此为基础通过修改后的 pagerank 算法来计算所有实体的 popularity;对于难以通过 pagerank 算法计算的新热实体的 popularity,再进行规则干预。最后对于仍然难以解决的 case,则直接对其 popularity 值进行人工赋值。Popularity 计算模块的整体流程如下图所示:




实体 A 指向实体 B、C、D。其与 B 之间的链接类型为 X,与 C 之间的链接类型为 Y,与 D 之间的为 Z。通过先验知识或实验总结,我们认为链接类型 Y 可信性不高,相比于 X,对 rank 值的流转有拟制作用,因此对其赋予一个系数 0.8,Z 的可信度很准确,但其性质与上述的音乐网站的关系类似,因此对于其赋予一个系数 0.2,而 X 类型的完全可行,其系数则为 1.0。在某一迭代阶段,实体 A 的 rank 值为 3,B、C、D 的 rank 值分别为 4、2、3。由于 A 有 3 条出边,因此到 B、C、D 的初始流出值均为 3/ 3 = 1。加上系数的影响,实际到 C、D 的流出值分别为 0.8 和 0.2,未流出的剩余值为(1 -0.8) + (1 - 0.2) = 1.0。

因此迭代过后,B、C、D 的 rank 值分别为 4 + 1.0 = 5,2 + 0.8= 2.8,3 + 0.2 =3.2,而 A 的 rank 值需要在所有指向它的实体流入到它的值之和的基础上,再加上未流出的 1.0。

十、知识库的存储和查询

知识图谱是一种典型的图结构数据集合,实体是图中的节点,关系(属性)是带有标签的边。因此,基于图结构的存储方式能够直接正确地反映知识图谱的内部结构,有利于知识的查询。如下图所示,红色圈代表实体,实线是边(妻子),表示实体间的关系,如“刘德华的妻子是朱丽倩”,虚线是属性(出生日期),表示实体具有的属性,如“刘德华的出生日期是 1961 年 9 月 27 日”。


Topbase 知识图谱的存储是基于分布式图数据库 JanusGraph,选择 JanusGraph 的主要理由有:1)JanusGraph 完全开源,像 Neo4j 并非完全开源;2)JanusGraph 支持超大图,图规模可以根据集群大小调整;3)JanusGraph 支持超大规模并发事务和可操作图运算,能够毫秒级的响应在海量图数据上的复杂的遍历查询操作等。

Topbase基于JanusGraph存储查询架构如下:


十一、总结

由于知识图谱的构建是一项庞大的数据工程,其中各环节涉及的技术细节无法在一篇文档中面面俱到。本文主要梳理 Topbase 构建过程中的技术经验,从 0 到 1 的介绍了图谱构建流程,希望对图谱建设者有一定的借鉴意义。

相关推荐

VLOOKUP的18种高阶用法大公开!99%的人都不知道的神操作!

作为被头条用户催更的Excel课代表,今天带来让HR追着要模板、让老板主动加薪的VLOOKUP终极指南!从基础到高阶一网打尽,文末送36个行业专用模板!一、为什么你的VLOOKUP总报错?血泪大数据...

Vlooup公式,2种模糊查找匹配,1分钟学会

工作中,VLOOKUP公式使用频率是很高的,用来各种查找匹配问题今天我们分享两种模糊查找匹配问题,一种是文本的模糊查找匹配,一种是数字的模糊查找匹配问题1、文本模糊查找匹配使用模拟数据举个例子,原始数...

与vlookup功能相似的函数,照样搞定表格数据查询,简单还实用

在日常表格数据处理工作,说到数据查询,很多小伙伴首先想到的是Vlookup函数,老师的教程中也多次讲到Vlookup函数的用法和实例。其实在Excel中还有其他的数据查询函数公式或技巧,今天我们先来学...

别再折腾VLOOKUP了!DGET逆向查找10秒通关,小白必看

今天要掀翻一个“过气网红”——VLOOKUP!你是不是也经历过这些崩溃瞬间:逆向查找要交换列顺序,复制粘贴到手软!多条件查找要嵌套MATCH,公式长到怀疑人生!别忍了!今天教你用DGET函数一键封...

职场新人必学!VLOOKUP函数10分钟速成指南

正文:"今天来讲解办公人入职期初函数VLOOKUP,这是所有职场人最重要也是最基础的技能。掌握它,90%的数据查找再不用求人!特别献给刚入职场的你——别让Excel成为加班理由。"——...

巧用Vlookup函数揪出“第三者”(vlookup第三个参数是什么)

在一张Excel表格的重复记录中,让你快速列出每种不同物品第2次或第n次出现的记录,你会怎么做?Vlookup函数就有这个本事。举例来说,产品或者物流表格中往往会记录有同一货物的多笔数据(如下图的今日...

分享12个VLOOKUP超经典用法(vlookup通俗易懂)

刚毕业那会,面试的时候经常会被问到会不会用Excel?我就理直气壮地回答:“会啊。”毕竟,简历上可是写着熟练。接着面试官扔出一句“那你会VLOOKUP吗?”我还是会一口咬定:“我会。“其实,我都没用过...

查找匹配别只知道Vlookup,Sumifs也可以!

工作中遇到查找匹配问题的时候,大家第一反应是不是都想到的Vlookup公式呢,有没有小伙伴们给Sumifs一点点机会的呢,有时候Sumifs比Vlookup更好用1、Vlookup公式举个例子,左边是...

Excel函数讲解:VLOOKUP函数,轻松玩转数据查找

常用函数系列教学:VLOOKUP函数讲解(46)。不懂VLOOKUP函数怎么高效查找数据?闲话少叙直接开讲。基本含义:VLOOKUP函数用于在表格按垂直方向(到)上查找返回行数据。如何使用及注意事项?...

CHOOSEROWS+CHOOSECOLS原来是一个超级查找函数组合!

场景一:要在学生名册中,抽查一名学生成绩。公式:=CHOOSEROWS(A1:D5,2)解析:第一参数A1:D5为数据区域,第二参数2表示提取第2行数据。把数据区域改为A2:D5,结合RANDBETW...

数据查询不止有vlookup函数,自定义zlookup函数查询操作更高效

Excel数据查询,相信大家首先会想到vlookup函数。毋庸置疑vlookup函数在Excel数据查询中作用是非常的强大。但是它也有一些不能实现的数据查询。如上图所示,我们需要根据人员的出现次数,提...

「EXCEL进阶」VLOOKUP函数怎么查询一个值返回多个结果

前言:VLOOKUP函数一般一次只能返回一个结果,本例介绍通过辅助列的方法使VLOOKUP函数查询一个值,返回这个值对应的多个结果。使用场景举例:根据表格中同一数值,返回对应值的多个结果。比如这张数据...

WPS查找能手VLOOKUP函数使用方法讲解

各位同学好!今天我们来深度剖析WPS最实用的查找工具——VLOOKUP函数。这个函数能帮你在表格中快速定位并提取所需数据,可以帮你快速核对两批数据差异,还可以合并多个表格的关联信息,甚至可以帮你制作动...

Excel常用10个函数:跨表查找Vlookup,适用于大数据中查找精确值

Hello大家好,我是Office米,今天,我们将和大家一起分享交流,常用的10个函数之一:查找引用函数VLOOKUP。在说VLOOKUP函数之前,我们要先了解,平时Excel日常工作中会遇到哪些问题...

掌握了这个套路,无论用 Excel vlookup 函数查找第几次结果都很轻松

用vlookup查找默认情况下是一对一出结果,如果要一对多查找,就需要用到各种技巧,具体方法我写过非常多了,可以搜索一下历史记录。只要掌握了今天这个套路,无论你想查找第几次重复值,都易如反掌。案例...

取消回复欢迎 发表评论: